math 3 11
a
b
c
gcd
a
b
c
a
b
a
∧
b
i
0
n
a
i
0
apply_to_list
and
map
lambda
i
gt
vector_selector
i
a
0
integer_interval
0
n
⋀
i
=
0
n
(
a
i
>
0
)
a
b
a
∨
b
a
b
a
xor
b
a
¬
a
A
B
A
⇒
B
x
x
x
0
∀
x
.
x
−
x
=
0
p
q
p
q
p
q
p
q
2
forall
p
q
implies
and
in
p
Q
in
q
Q
lt
p
q
lt
p
power
q
2
∀
p
∈
Q
∧
q
∈
Q
∧
(
p
<
q
)
.
p
<
q
2
∀
p
,
q
.
(
p
∈
Q
∧
q
∈
Q
∧
(
p
<
q
)
)
⇒
(
p
<
q
2
)
x
f
x
0
∃
x
.
f
x
=
0
x
f
x
0
exists
x
and
in
x
Z
eq
f
x
0
∃
x
.
x
∈
Z
∧
f
x
=
0
x
|
x
|
x
ⅈ
y
x
+
ⅈ
y
¯
x
y
arg
x
+
i
y
x
y
ℛ
x
+
i
y
x
y
ℑ
x
+
i
y
a
b
c
lcm
a
b
c
a
⌊
a
⌋
a
⌈
a
⌉
2
4
1
2
2
/
4
=
1
/
2
3
4
3
≠
4
3
2
3
>
2
2
3
4
2
<
3
<
4